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I. Introduction

In this report, we summarize work done under NASA Contract

No. NASI-15894 on advanced stability theory analyses for laminar

flow control. The report consists of six sections, of which the

last five are independent reports that summarize our progress on

different aspects of this work.

In Section II, we present a summary of our work on the

SALLY stability analysis code for compressible flow problems.

The resulting computer code seems to be at least an order of

magnitude more efficient than previously developed codes.

In Section III, we present a comparison of methods for

prediction of transition using the incompressible SALLY computer

code. It is shown that transition prediction by the envelope

method and a new modified wave packet method are comparable

in reliability but that the envelope method is more efficient

computationally.

In Section IV, we present a study of instability and

transition in rotating disk flow in which the effects of Coriolis

forces and streamwise curvature on transition are investigated.

Good agreement between the theory and experiments performed at

NASA Langley Research Center has been achieved using the eN method

with N of order i0 at the onset of transition.
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In Section V, we present a new 'linear' three-dimensional

instability mechanism that predicts Reynolds numbers for

transition to turbulence in planar shear flows that agrees well

with experiment. We have extended the SALLY stability codes to

compute directly this new instability mechanism. The results are

in good agreement with experiment. Subcritical transitional

Reynolds numbers of order i000 in plane Poiseuille and plane

Couette flow and of order 2000 in pipe Poiseuille flow have

been found.

In Section VI, we present results obtianed using our
4

stability analysis codes to study the finite-amplitude (nonlinear)

stability of axisymmetric pipe PoiSeuille flow. Our results

are in disagreement with the earlier analytical work of Davey,

Itoh, and Stuart. There appear to be no finite-amplitude

nonlinear axisymmetric instabilities, in contrast to the

predictions of the above-mentioned authors. The conclusion

is that extreme care must be exercised in the application

of Landau-Stuart-Watson perturbation ideas to such flows.



II. Efficient ComputatJ:on of Compressible Flow Stability of

Three-Dimensional Boundary Layers

In this section we present a method for calculatinn n9 com-

pressible flow stability of three-dimensional boundary layers.

The method is based upon a two point boundary value (direct)

approach and is more efficient than the commonly used shooting

methods (i, 2) by an order of magnitude.

The computer code SALLY (3) which was developed for LFC

(laminar flow control) design applications employed incom-

pressible stability theory. It is highly desirable to develop

a COMPRESSIBLE SALLY code which can be used as a design tool

for LFC applications. One basic prerequisite for such a

code is a fast eigenvalue solver for compressible stability

equations which comprise of a system of eight first order

equations. The existing numerical methods generally use

Runge-Kutta integration procedure along with Gram-Schmidt

orthonormalization to control the parasitic error growth.

This procedure is often very slow and thus very inefficient

if used in a black box stability code such as SALLY. We de-

scribe here an efficient method for obtaining eigenvalues

of the compressible stability equations. This method will be

used in the compressible version of SALLY.

We write the governing equations as

(A D 2 + B D + C) _ = 0 (i)

where _ is a 5 row vector defined as

T

V"

\ P

C,U" + 8W"

¢ = _w" - _u"

(2)

I'

, 3



and A, B, C are 5 X 5 matrices with the following structure:

A

1 0
0 1

0 0

'0 0

0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

B ___

/ bll b12

b21 b22
I

0 b32

0 0

b51 b52

\
o o o \

b23 0 0 1

b 0 0
33

0 b44 0

0 0 b55

(3)

Cl I c12

C ._

0 c22

0 c32

c41 c42

c51 c52

d
In the above D -

dy '

0 c14 c15 \

\0 c24 c25

c33 c34 0

0 c44 c45

./

0 c54 c55 /

where y is the normal boundary laye_

coordinate and V" is the corresponding perturbation amplitude.

u" and w" are the perturbation amplitudes in x and z directions

and _, _ are the respective wave numbers. T" and P" are the

amplitudes Of temperature and pressure fluctuations respectively.

The boundary conditions for Equation (i) are

°
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y = 0; 91 : 92 = 93 = 94 = 0

92 93, 94 + 0y + _; 91,

(4)

In order to solve eigenvalue problems posed by Equations

(i) and (4), we represent Equation (i) by central differences

which results in a block-tridiagonal system of equations with

5 X 5 blocks. The system of equations is solved using Lu

factorization. We use inverse iteration procedure (4) for

eigenvalue search. This method is very effective once a

good guess for the eigenvalue is available because the con-

vergence is cubic.

If we write Equation (i) as

L 9 = 0

then, the inverse iteration algorithm for obtaining eigenvalue

can be written as
/'

(L - Ik I) 9 k + 1 = f 9k

(L - I k I) T _k + 1 = f" _k

T L 9 k.....-_ kk + 1 = _k + 1 + T T1 _k + 1 9k + 1

The finite-difference method presented above is second

order accurate. However, the accuracy of the eigenvalue ob-

tained by this procedure can be increased by Richardson's

extrapolation_ For this purpose we use Neville's algorithm.

If

p!O) = k (h i)l
(i = 0, ..... m)

: 5



where h. is the grid size, then
l

(j) p(j-l)
Pi = i + 1

+

p!j-l) _ p!j)
1 -- 1 1

I hh_+jl 2 - 1

j = i, ... m

i = 0, ... m-j

(6)

We present here eigenvalue results for the leading edge

region (R = 150) of a 350 swept back wing of infinite span.

Table 1 gives the eigenvalues calculated for different grids

1

(h i = _-_) and the extrapolated values. The sequence for
1

h. chosen is that proposed by Bulirsch and Stoer (5) which
l

gives an eigenvalue converged to five significant digits.

The cost of computation obviously depends upon the required

accuracy. Generally, an eigenvalue accurate to 3 significant

digits can be obtained in less than 2 seconds on Cyber 175.

Figure 1 shows eigen-function distribution for the same flow

as above.

Another way to increase accuracy is to use Chebyshev

spectral method (6). The spectral methods provide infinite

order of accuracy and are extremely desirable particularly

for high Reynolds number applications. Let us represent

Equation (I) as

LS p _ = f (7)

is a spectral operator.where L
sp

The direct solution of (7) by Gauss elimination methods

would require order N 2 (N = number of points) and order N 3

j'



arithmatic operations. We describe here a method which permits

solution of (7) using order N storage locations with the number

of arithmetic operations of the order of N log N. Specifically

we use Chebyshev acceleration scheme (7):

¢n + i [_n qb(n)+ (l-_n)¢(n-l)_Lap = Lap

- _ _n (LspU(n) - f) (8)

where L is an approximate finite-difference operator and
ap n

is a relaxation parameter. The error in the solution of

Equation (7) is decreased by a factor of 10 6 after about

9 iterations of Equation (8).
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TABLE i.

RICHARDSON EXTR,_POLATED EIGENVALUES I-- (a = .2724, 13 = - o2915)

i

20 1

40 2

60 3

_ 80 4

120 5

1 2 3 4 5 6

-.2541052E-01 .662266E-02

-.2514681E-01 .6272069E-02

-.2511236E-01 .6208798E-02

-.2510183E-01 .6186852E-02

-.2509352E-01 .6171322E-02

-.2509100E-01 .6165936E-02

-.2505890E-01 .6155269E-02

-.2508481E-01 .6158182E-02

-.2508645E-01 .6158633E-O2

-.2508751E-01 ,6153899E-02

-.2503777E-O1 .6159010E-O2

-.2508804E-O1 615854GE-02

-.25087OOE-01 .6158786E-02

-.2508786E-01 .6158987E-O2

-.2508786E-01 .6150047E-02

.2500698E-01 .6158802E-02

.2508797E-01 .6159012E-O2

-.2508786E-O1 .6159057E-02

-.2508800E-01 .6159018£-02

. 2508786E-01 .6159 060E-02

-.2508785E-01 .6159061E-02
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III. Comparison of Methods for Prediction of Transition bv

Stability Analysis

ABSTRACT

Several methods of transition prediction by

linear stability analysis are compared. The spectral

stability analysis code SALLY is used to analyze

flows Over laminar flow control wings. It is shown

that transition prediction by the envelope method

and a new modified wave packet method are comparable

in reliability but that the envelope method is more

efficient computationally.

J
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NOMENCLATURE

A

a
n

c

f

k

L

N

R

Re
c

s

T
n

t

U .

P

U
x

U

Vg

V |

W

w

x

Y

z

maximum disturbance amplitude

Chebyshev coefficients

wing chord

dimensional frequency

wave vector

algebraic mapping parameter

N-factor = £n A/A 0

displacement thickness Reynolds number, Ux_ /9

chord Reynolds number, U_ c/v_

arc length along an arbitrary path on the wing

Chebyshev polynomial

time

unperturbed x-velocity in the boundary layer

potential flow vector at edge of boundary layer --

x-component of U
P

incoming free stream velocity

group velocity vector

perturbation velocity in the y-disection

unperturbed z-velocity in the boundary layer

mapped coordinate normal to wing surface

coordinate in the direction of the normal chord

coordinate normal to the wing surface

coordinate along the wing span

-_, 15



_A

8

6

V

e

x-wave number

angle of attack

z-wave number

frequency

displacement thickness

wave length

kinematic viscosity

wing sweep angle

angle formed by the wave number vector with the
x-axis

angle formed by the group velocity vector with
the x-axis

angle formed by the potential flow vector with
the x-axis

eigenfunction; defined in Eq. (3).

J
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INTRODUCTION

In this section, several methods of transition prediction

using lin@ar stability analysis are compared. The incompressible

linear stability computer code SALLY is used in various ways

to study three-dimensional boundary layer flow over laminar

flow control (LFC) wings. Here we compare the so called

envelope method I with wave-packet method_, to predict

transition. We conclude that the envelope method is at

least as reliable as the more complicated and less efficient

wave packet method.

Consider the stability of three dimensional laminar

flow over swept wings with sweep angle 8- The coordinate

system used on the wing is depicted in Fig. i. The x-axis

is in the direction of the normal chord, the y-axis is

normal to the surface of the wing while the z-axiS is
J

along itsspan.

Neglecting the curvature of the wing surface,

compressibility effects, and non-parallel flow effects,

linear disturbances satisfy the Orr-Sommerfeld equation

d 2 2
(
dy 2

_ 82)'2_

= iR{ (eU + 8W - _) d 2 cL2 (ed2u 8d2W)
[ 2 - 82]_ - -- + _}
dy dy2 dy2

(i)

17



with the boundary conditions

(0) = d_j[ (0) = 0; _ (_) bounded (2)
dy

Here the perturbation velocity in the y-direction is assumed

to be of the form

v' = [Re [_ (y) e i (ex+Sz-_t) ] , (3)

U(y) and W(y) are the (unperturbed) laminar boundary

layer velocities in the x- and z-directions, respectively,

and R is the Reynolds number. It is assumed that all

variables are non-dimensionalized with boundary layer

scaling.

Equations (I) - (3)

problem for the frequency

constitute an eigenvalue

and wavenumbers e,8 .

For given Reynolds number R, this eigenvalue problem

provides a complex dispersion relation of the form

j/

= 8) (4)

relating the complex parameters _,8 and _.

18



not grow in space.

Semi-empirical methods to predict transition on

LFC wings are based on tracing the evolution of modes
1

across the wing. An appropriate N-factor for transition

correlation is defined as the (logarithm of the) total

growth factor across the wing (see below). A good transition

predictor is one for which transition occurs at nearly constant

N for a wide variety of wings and flow conditions.

For natural transition, disturbances of all frequencies

are present on the wing surface. In this case, there are

many optional ways to compute N factors. The first choice

is between temporal and spatial stability theory. In

temporal theory, _ and 8 are real while _ is complex;

the mode grows in time if Im(_) > 0, but the mode does

An N-factor for transition correlation

may be defined as

where v
g

Is (5)N = Im(_)/IRe (_g)Ids

sO

=(_/_e, _/_8) is the (complex) group velocity

and s is the arclength along an appropriate curve on the wing.

The N-factor (5) is not fully defined until a prescription

is given for singling out a specific mode at each position

on the wing and for defining a specific curve on which to

integrate. We shall return to these questions in Sec. 2.

In spatial stability theory, _ is real but _ and/or

8 may be complex. Again, there is arbitrariness in the

definition of an appropriate N-factor because of the variety

of excitable modes on the wing.

19



WAVE PROPAGATION IN BOUNDARY LAYERS

The complex eigenvalue relation (4) provides

two. real relations among the three complex quantities

_,8, and _. In temporal stability theory, the

requirements that _ and 8 be real provide two more

conditions so there remain two arbitrary parameters

among Re(s), Re(8), Re(e), and Im(_).

There are several ways to remove this arbitrainess

in the computation of the growth factors N. In the

envelope method I, Im(_) is maximized with respect

to e at fixed Re _ [which then determines _,8

and _ uniquely at each point on the wing] and the

curve in (5) is defined to be everywhere tangent

to Re (_g)

With spatial stability theory, there remains

three independent real parameters among e,8 and

Re(e) once the eigenvalue condition (4) is satisfied.

One possibility is to require that the direction of

most rapid growth, which is parallel to the vector

(-Im(e), -Im(8)), be parallel to Re(_g) and that

the resulting value of the most rapid growth rate

be maximized with respect to the remaining two

3
independent parameters.

Alternatively, it is possible to use wave

2O



packet theory to remove the arbitrariness in the definition

of N-factors. For a conservative dynamical system•

kinematic wave theory implies that a wave packet

propagates in physical and wavevector space according
4

to the Hamilton-Jacobi equations

dx = B_ (6)
dt _

dz = _m (7)
dt 28

d_ _ _
dt _x

(8)

d8 =_ 8_ (9)
dt _z

(9)-

2
Nayfeh considered the extension of Eqs.

to non-conservative systems where e,8,

(6) -

and _ can

• and _8 may also be complex.be complex. Then _

For a physical solution with real x,z, and t to

exist, (6) and (7) imply that the group velocity

(_ ,_8) must be real. Nayfeh proposed the computation

of wave packet solutions determined by the six independent

conditions: (i) the eigenvalue condition (4);

(ii) Im_ = Im _B = 0; (iii) Re _ fixed; (iv)

Re 8 fixed; and (v) dx/dt = _ dy/dt = _8" Under

these conditions the N-factor is determined by

21 •



t
N = f [-_ Im(e)-_sIm(8)+Im(_)]dt (I0)

t o

Finally we study a modified non-conservative wave

packet formulation in which e,8, and _ are determined

by: (i) the eigenvalue condition (4); (ii)

Im _ = Im _8 = 0; (iii) Re _ fixed with Im_ = 0; and

(iv) dx/dt = we, dy/dt = _8 " The motivation for these

latter conditions is simply that laminar flow over a LFC

wing may be assumed steady so a wave packet should propagate

at fixed real frequency. However, there is less justification

for assuming Re 8 is fixed as in Nayfeh's formulation,

because the flow is not homogeneous in space. The N-

factor is given by (i0) with Im(_) = 0.

With Nayfeh's formulation of the wave packet equations,

the growth factor N is a function of the independent

variables Re _ and Re 8 , while N is a function of only

Re _ in our wave packet formulation. Therefore,

maximization of N over all allowable packets is computation-

ally more efficient with our formulation. We have performed

computations (not reported in detail here) with Nayfeh's

wave packet formulation and have found the computations to

be extremely sensitive, wi£h realistic solutions satisfying

the required constraints at some wing locations but not

at others and the overall N factor at transition highly

22



valuable. We do not believe these latter effects

originate in the numerical scheme. In any case, the conclusion

of the present paper that the envelope method is at least

as reliable as the wave packet method and that it is considerably

more efficient would not be changed by comparisons with

results obtained by Nayfeh's wave packet formulation.

NUMERICAL METHOD

In the computer code SALLY I, Eqs. (i) - (2)

are solved using a spectral method based on Chebyshev

polynomials 5. The boundary layer direction y

0 < y < =,

-I <w < 1

is mapped into the finite interval

by the algebraic mapping

w = 2 -Y--- 1 (ii)
y+L

and #(y) is approximated as the finite Chebyshev

polynomial series

(y) = [ a T (w)
n=0 n n

(12)

3

The resulting algebraic eigenvalue problem is solved

globally (if a guess for the eigenvalue is not

available) by a generalized QR algorithm or locally

(if a good guess is available) by inverse Rayleigh

iteration 6. The resulting scheme is very efficient

and accurate.

23



The properties of the laminar boundary layer

profiles required to solve (i) - (2) are obtained using

a compressible boundary layer code for swept tapered

wings developed by Kaups and Cebeci_

The code SALLY also performs a number of optional

computations, including: (i) computation of maximum

amplification among all wavelengths and propagation

angles; (ii) computation of amplification at fixed

frequency and fixed wave length; (iii) computation

of amplification at fixed frequency and fixed propagation

angle; (iv) computation of maximum amplification at

fixed frequency; and (v) computation of wave packet

solutions according to the prescriptions discussed

in Sec. 2.

24



RESULTS

Burrows 7 has reported flight transition data

taken at Cranfield for a large, untapered, 45 ° swept

half wing mounted as a dorsal fin upon the mid-upper

fuselage of an Avro Lancaster airplane. The airfoil

section was made-up of two semi-ellipses, one of which

constituted a faired trailing edge and the other

corresponding to the leading edge of a 10 percent

thick airfoil, with effective chord of 10.83 feet,

measured in the free stream direction. The location

of the beginning of transition in the Cranfield data

was estimated as given in Ref. 8. Two of the Cranfield

flight rests were chosen for correlating transition

using wave packet theory.

In the first test case, calculations were made

for a chord Reynolds number of 11.7 x 106 and -2 °

angle of attack. In this flow, transition begins at

x/c = 5.5%. A maximum N factor of 7.6 was obtained

at a frequency of 1250 Hz both with the envelope

method and the modified wave packet method.

The predicted variation of the N factor up

to the transition location was almost identical for the

envelope method and the modified wave packet method.

We also compute the solution of the conservative wave

packet equations (6) - (9) in which only the real

parts of equations (6) -(7) are taken while (8)-(9)

J
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are solved in their full complex form. The resulting

N factor at transition is 5.2. The variation of N

factor with x/c for the various methods is plotted

in Fig. 2.

Wave angle, wave length and the direction of

the group velocity as predicted by the envelope and

wave packet methods are given in Figs. 3 - 5. Although

the results are qualitatively similar, there is

appreciable quantitative difference in these parameters

at the transition location. It is surprising that the

N factor calculated by the envelope and modified wave

packet methods are the same.

In the second test case, the angle of attack

of the wing was changed to zero. In this case,

transition occurred experimentally at x/c = 7%.

The envelope method gave an N factor of 10.8 at

a frequency of 1000 Hz. The wave packet method gave

a maximum N factor of 10.5 at a frequency of

1200 Hz, which is close to the predictiQn of the

envelope method. The variation of N factor with

x/c is plotted in Fig. 6. The predictions of the

conservative wave packet approximation and a fixed

wavelength, fixed frequency integration are also

plotted in this figure. The conservative wave packet

approximation gave an N factor at transition of

8.6 rather than 10.5.

J

26



Figure 7 shows the influence of frequency

on N factor at transition for the wing as

predicted by the wave packet theory. Wave angle,

wave length and direction of the group velocity

for this particular wing are shown in Figs. 8-10.

Again there is substantial quantitative difference in

the predictions of the two methods.

J
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CONCLUSIONS

Calculations were made for a Cranfield 45 °

swept wing with Re c = 11.7 x 106 using a modified

wave packet method and the envelope method. Both

methods gave an N factor of 7.6 at transition

location for an angle of attack, eA = - 2°" For

_A = 0 °, the envelope and modified wave packet

methods gave N factors of 10.8 and 10.5,

respectively. Since it may be argued that the

wave packet method is physically more relevant for

predicting transition in three dimensional boundary

layers, it was initially hoped that the wave packet

method might give more consistent transition N

factors. However, the results show that the wave

packet method provides N factors which are at best

as consistent as those of envelope method. Since the

wave packet method is at least 3 times as expensive

to use as the envelope method, the latter is recommended

for engineering design calculations.

_J

/
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FIGURE CAPTIONS

Figure 1. A plot of the coordinate system on a swept

wing.

Figure 2. A plot of N versus percent of chord

x/c for various methods applied to a swept wing

of an Avro Lancaster airplane at -2 ° angle of

attack. Solid curve: modified wave packet method

and envelope method at f = 1250 Hz which gives nearly

the maximum N at the transition point. Dashed

curve: result of integrating equations (6) - (9)

across the wing with (6) and (7) replaced by

their real parts. The curves are plotted from the

beginning of the unstable flow region until the

transition point at x/c = 5.5%.

Figure 3. A plot of wave propagation angle versus

x/c for the same flow as in Figure 2.

Figure 4. A plot of wavelength versus x/c for the

same flow as in Figure 2.

Figure 5. A plot of the direction of the group velocity

for the same flow as in Figure 2.

Figure 6. Same as Fig. 2 except for the wing at 0°

angle of attack. In addition to the results of the

wave packet methods and envelope method, the N

30



factor obtained by integrating a fixed

wavelength, fixed frequency mode across the wing is

given. Here N is given by (5) and the mode is

determined by the six real conditions: (i) Eq. (4);

(ii) Im a= -Im 8 = 0; (iii) _/c _ 0.001; (iv)

"\

Re _= 750 Hz.

Figure 7. Variation of N at transition versus

frequency obtained using the modified wave

packet method for the same flow as in Figure 6.

Figure 8. A plot of wave propagation angle versus

x/c for the same flow as in Figure 6.

Figure 9. A plot of wavelength versus x/c for the

same flow as in Figure 6.

Figure 10. A plot of the direction of the group

j

velocity for the same flow as in Figure 6.
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IV. Instability and Transition in Rotating Disk Flow

ABSTRACT

The stability of three-dimensional rotating disk

flow is investigated, including the effects of Coriolis

forces and streamline curvature. The results show that

the critical Reynolds number for establishment of

stationary vortex flow is R C = 287. _These vortices ................

spiral outwards at an angle of about 11.2 ° and

transition to turbulence occurs when their total

amplification is about ell. . We also report new

experimental results on the spatial growth rates of

the stationary vortices. It is shown that our

analysis gives growth rates that compare much better

with the experimental results than do results obtained

using the Orr-Sommerfeld equation. Our calculations

also indicate the existence of weakly unstable propagating

(Type II) modes at low Reynolds numbers (R c = 49).
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i. INTRODUCTION

The prediction of transition in three dimensional

boundary layers [1-3] is a subject of both fundamental

and practical importance in fluid mechanics. Practical

interest in the subject centers on the design of laminar

flow control (LFC) wings that promise significant

improvement in airplane fuel efficiency. At present,

the most useful tool for transition prediction in such

flows is the so-called eN method [4]. Hefner and

Bushnell [5] and Malik and Orszag [6] show that

the exponent N (called the N factor) is of the

order 7-11 when transition occurs on LFC swept

wings.

The instability mechanism exhibited in the

leading edge region of a swept wing is similar to that

found in the boundary layer on a rotating disk, since

both have mean cross flow profiles with inflection

points. More details on the similarities between the

two flows is given in Ref. [7]. However, the rotating

disk flow is more convenient to study in view of von

Karman's exact steady solution of the Navier-Stokes

equations [8].

Using hot-wire techniques,Smith [9] observed that

sinusoidal disturbances appear in a rotating disk boundary

layer at sufficiently large Reynolds number. About 32
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oscillations were observed within a disk rotation period

and analysis indicated that the disturbances propagate at

an angle of about 14 ° relative to the outward drawn radius

(where the direction of disk rotation defines positive

angles). Later, in a remarkable study using the china-

clay technique, Gregory et al [i0] observed about 30

vortices over the disk spiraling outwards at an angle

of about 14°. (that is, their nor_als make an angle of about

14 ° with the outward drawn radius). These vortices, which

appeared stationary relative to the rotating frame of

the disk, were first observed at a Reynolds number R C =430

[where R is defined after (2.14) below]. Transition

to turbulence occurred at RT= 530. The overall conclusions

drawn by Gregory et al have been confirmed in later

investigations [11,12]. It has been found that there

are about 30 stationary vortices whose normals make an

angle of ii ° - 14 ° with the radius. However, there seems

to be considerable controversy over the value of the

critical Reynolds number which in our view can be attributed

to the measurement techniques used. Further, at low

Reynolds numbers, Fedorov et al [13] observed only 14-16

vortices with normals lying at an angle of about 20 ° _

Stuart [i0] analysed the linear, inviscid

stability of rotating disk flow. However, the neglect of
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viscosity resulted in the prediction of 113-140 vortices

over the disk which is about four times larger than the

observed value. Brown [14] extended Stuart's work to the

viscous case by applying the Orr-Sommerfeld equation to disk flow.

Using temporal instability theory, Brown found R C = 178,

which is much less than the observed value. Recently,

Cebeci and Stewartson [3] solved the Orr-Sommerfeld

equation for rotating disk nrofiles using spatial stability

theory and found R C = i'_5. They also suggested that

wave packets propagate in three dimensional flows in such

a way that de/d8 is real. Using this condition, Cebeci

and Stewartson correlated transition using the e N method

and found the N factor at transition (RT= 510) to be

about 20 which is much higher than that found for LFC

wings ([5],[6]). Bushnell (private co_%unicati0n) argues that

a higher N factor may be required for transition in disk flow than

on LFC wings because the boundary layer is rotating with

the disk while the external disturbances in the surroundings

are not. Consequently, there is no direct coupling between

the external disturbances and the instability waves in the

rotating disk boundary layer.

The Orr-Sommerfeld stability equation neglects

the effects of Coriolis forces, streamwise curvature, and

nonparallel flow In Ekman layer flow, Lilly [15] has

shown that the Coriolis force has a significant effect on
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stability at low Reynolds numbers. Lilly showed that the

critical Reynolds number for appearance of stationary

vortices is higher (RC = 115) when the Coriolis

force is included in the analysis than when it is neglected

(Rc = 85). In addition to the stationary vortices,

he showed the existence of a parallel instability caused

by the Coriolis force at much lower Reynolds numbers.

Such an instability mechanism was also observed in the

Ekman layer experiments of Faller and Kavlor [16] and

Tatro and Mollo-Christensen [17]. The Ekman layer and

the rotating disk are similar in that both are three-

dimensional boundary layer flows in which rotation plays

a significant role. Lilly's results suggest that the

inclusion of the Coriolis force in the stability analysis

of rotating disk flow may also lead to a higher critical

Reynolds number for stationary vortices which is in better

agreement with observations.

In this section we present a stability analysis of

rotating disk flow in which the effects of Coriolis force

and streamline curvature are included. The resulting

sixth order system is solved numerically by a Chebyshev

spectral method [18-19]_ We also follow the evolution

of the disturbance modes using the envelope method

[1,6] and calculate the N factor at transition.
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The work of Kobayashi et al [12], which appeared during

the final stages of the present study, also includes the

effects of the Coriolis force and streamline curvature.

We will comment on this work in Sec. 6.

We also report results of an experimental investigation

of rotating disk flow in which the growth rates of the

boundary layer disturbances were measured using a hot-wire

probe. While only limited experimental results are now

available, the agreement with the present theoretical

analysis seems encouraging. We know of no previous

experimental study in which growth rates were measured.
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2. THEORETICAL ANALYSIS

Consider an infinite plane disk rotating about

its axis with angular velocity D . We take cylindrical

coordinates r*,8,z* with z* = 0 being the plane of

the disk. Assuming the fluid to lie in the half-space

z* > 0, the governing dynamical equations are, in the

rotating coordinate system,

v* _u* _u* v .2 1 _p*_u-- + u* _u* + + w* -
_t* 3r* r* _9 _z* r* p _r _

+ 9(32u*_ + 1 _2u* + _2u* + 1 3u*
3r .2 r .2 _8 2 3z.2 r* 3r*

2 8v*
2 _8r *

U*
----_-) + 2_v* + r*
r

(2.1)

3V*

_t*
+ U*

_V*

3r*

v* _v* Sv* u'v*
+ + w* + -

r* _8 _z* r*

I _p*

pr* 3@

+ _(_2v-- + 1 _2v, + _2 ,

3r .2 r .2 38 2 _z .2

1 _v* 2 _U* v*

+ r-_ 3r # + r.2 _8 r.2

- 2_u* (2.2)

48



v* 3w* 3w* 1 3D*
_W-- + U * _ W * + + W * = -- -- " i

3t* 3r* r* 38 3z* p 3z*

.2
} _ ( I _ w * 1 32w* 32w* 1 I _ w *

Dr,2 4 + -- + )r .2 382 Zz,2 r Dr*
[2.3)

_u* 1 _v* DW* u*
Dr* + r* _8 + _z---_+ r* - 0, (2.4)

where (u*,v*,w*) are the velocity components in the

(r*,8,z*) directions, respectively, p* is the pressure,

p is the density, and 9 is the kinematic viscosity.

Von Karman's exact solution of [2.1) - (.2.4) for

steady laminar rotating disk flow is obtained as follows

[8]. Let u,v,w, and p denote the steady state values

of u*,v*,w*, and p* respectively. Defining

= r*_F(z) , v = r*_G(z) , w =/_H(z) , p =p_Qp(z) , (2.5)

where z=z /_/9 then the Navier-Stokes equations (2.1) -

(2.4) reduce to the following equations for F,G,H and

P:

F 2 - (G+I) 2 + F'H - F" = 0 (2.6)

2F(G+I) + G' H - G" = 0 (2.7)
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P' + HHt - H" = 0 (2.8)

2F + H' = 0 (2.9)

where the prime denotes differentiation with respect to

z. The boundary conditions are

F = 0, G = 0, H = 0 at z = 0

F =0, G = - 1 for z ÷

(2.10)

Now we study the evolution of infinitesimal small

disturbances imposed on the steady flow governed by

Eqs. (2.5) - (2.9). Let r be the radial location near
e

W

which the analysis is to be made. Using r _ as the
e

reference velocity, 8" = _'_-_ as the reference length,

and pr 2 _2 as the reference pressure the perturbed
e

nondimensional velocities u,v,w and pressure p can

be written as

r F(z) + u(r,e,z,t)u(r,8,z,t) = (2.11)

r

v(r,8,z,t) = _ G(z) + v(r,e,x,t) (2.12)

i
w(r,8,z,t) = _ H(z) + Q(r,8,z,t) (2.13)
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p(r,8,z,t ) -
R2

P(z) + p(r,8,z,t) (2.14)

Here the nondimensional radius is r = r*/_, the Reynolds

number is R = r e /_7_, and re corresponds to r = R.

Substituting Eqs. (2.11) - (2.14) in the Navier-

Stokes equations (2.1) - (2.4) and linearizing with

respect to the perturbations gives:

3_ r _ + G __ + H __U_ + F _ _ 2 ~ r F, ~
3-_ + R F 3--r R 38 R 3z R _ (G+I) v + _ w

1 32u
3r Z [--

8r 2

1 32u 32u 1 3u 2 3v

+ 2 2 + _ + r _r 2 38
r 38 3z r

2 ]
r

(2.15)

39 + r 3v G 39 + H 39
3--6 [ F _-£ + R 3G R 3z

F 2 r
+ _ _ + _ (G+I) _ + [ G'W

(2.16)

1 3_ + 1 [329 + 1 329 + 32_ 1 39 2 3_
2 2 + +

r 38 R 3r 2 r 38 3z 2 r 3r 2 38
r

%1
r

+ r 3w G 3_ H 3_
3t R F _ + R 3-_ + R Zz

(2.17)

3z _ C_+ % + 32w
3r r 38 3z 2

+ 1 3Q
r 3r ]
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_+ I _9 3_
9-_ r_+_ +-r : 0 (2.18)

The boundary conditions are that _,_, and _ vanish

at z = 0,_.

For R>_, the system (2.15) - (2.18) may be

consistently approximated by replacing factors of r
-2

by R and neglecting terms of order R and smaller.

The replacement of r by R at this stage of the

calculation implies that we neglect some nonparallel flow

effects. These effects are now under study. The neglect
-2of terms of order R and smaller has little effect on

the results discussed below, as we verified by computations

in which they were included.

Replacing factors of r by R in (2.15) - (2.18)

gives a set of equations that are separable in r,8,t

so that the perturbation quantities may be assumed to

have the form

i (er+SRS-_t)
(_,v,w,p) = (f(z),h(z) ,_(z) ,_(z))e (2.19)

With this assumption, Eqs. (2.15) - (2.19) become (not yet

dropping terms of order R-2)

1 [f,,_12f _ Ff +i(_F+SG-_)f+F' # + iav =
1 1

+ R2 [i_f - 2i 8 h]- --3 fR

2(G+l)h - Hf']

(2.20)
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1 [h,,_12h_Fh_2 (G+I) f-Hh' ]i(_F + BG-_)h + G'_ + i8_ =

1 1 h (2.21)
+ _ [ieh + 2i 8 f] - --3

R

1 [%,,_I2__H_,_H,%] + i 2 e # (2.22)i(_F + 8G-_) _ + z' =
R

(ie+R l-)f + i Bh + _' = 0 (2.23)

where 12 = e2 + 82.

Eliminating _ from (2.20) - (2.22) by means of

(2.23) gives, neglecting terms of order R -2 and smaller,

1
[i(D2-12) (D2-_ 2) + R(eF+SG-_) (D2-_ 2) - R(_F"+SG")-iHD(D2-_ 2)

- ill' (D2-[ 2) - iFD2]_+I[2.(G+I)D + 2G'] n = 0 (2.24)

1 1
_[2(G+I)D-iR(eG'-BF')] _ +_[i(D2-12) + R(_F+SG-e) - iHD - iF]N = 0

(2.25)

and where D = d/dz, e = m-i/R, 2 = ee+ 82 and

D = eh - 8f isproportional to the z-component of the

perturbation vorticity. The final result (2.24) - (2.25) is a con-

sistent set of stability equations valid to order R -I.

The boundary conditions for the sixth order system

(2.24) - (2.25) are
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(o) = _'(o) = n(o) = o

(2.26)

_(_) = _'(_) = n(_) = 0

Note that if the Coriolis force and streamline

curvature effects are neglected, the above system

reduces to the fourth-order Orr-Somm.erfel d equation;

[i(D2-12) 2 + R(eF+SG-_)(D2-12) - R(eF"+SG")]_ = 0

(2.27)

In Sec. 6, we report nt_erical results for both the

sixth order system (2.24) - (2.25) and the fourth order

equation (2.27) in order to study the effect of Coriolis

force and streamline curvature terms on the stability of

flow due to a rotating disk.
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3. NUMERICALMETHOD

We solve the Orr-Sommerfeld equation (2.27) in

the computer code SALLY [i] by using a spectral method

based on Chebyshev polynomials[18-19].Here we extend the

method to solve the sixth order system (2.24) - (2.26).

The boundary layer coordinate z, 0 < z < _ is
m

mapped into the finite interval - 1 < _ <i by the

algebraic mapping

= 2 z 1 (3 i)
z+L

where L is a scale parameter chosen to optimize the

distribution of points in _. Then _ (z) and _ (z)

are approximated as the finite Chebyshev polynomial

series

M

(z) = _ a n Tn (_)
n=0

(3.2)

M

= T (_)n (z) [ bn n
n=0

(3.3)

Substituting (3.2) , (3.3) in (2.24) - (2.26) and

collocating

(0 < j < M)

[19] at the discrete points _j = cos _j/M

gives the algebraic eigenvalue problem,

A = _B (3.4)
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where A and B are 2(M_I) × 2(M+I) matrices. The

eigenvalue problem (3.4) is solved globally (if a

guess for an eigenvalue is not available) by a generalized

QR algorithm or locally (if a good guess is available)

by inverse Rayleigh iteration [20]. The resulting scheme

is very efficient and accurate. In the present

calculations the optimum value of the scaling parameter

L was found to be about

reported below, M = 34

used.

1.8. In most of the calculations

so 35 Chebyshev polynomials were

The accuracy of the method was tested in several

ways. First, the number of retained polynomials, M + 1

was varied to check the accuracy of the eigenvalues and

eigenfunctions. Then, calculations were made for the

stability of Ekman flow. Comparisons were made with the

results obtained by Lilly [15] for R = 65, ii0,

150, 300 and 500 with good agreement.

For rotating disk flow, the global method gives 0nly

one unstable eigenvalue [Im(_) > 0] for R > 150 that

is insensitive to M. However, spurious unstable modes

appear for lower R which are discarded as unphysical

because they are very sensitive to M.
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4. TRANSITION PREDICTION USING THE eN METHOD

In three dimensional flow, the dispersion relation

is given by the complex relation

= _(_,8) (4.1)

where _,8, and _ are, in general, complex. Therefore,

there are four arbitrary real parameters among e,8 and

_. There are several ways [6] to remove this arbitrariness.

In the present study we employ the envelope method [i].

Here the four conditions are obtained by using temporal

stability theory [in which Im _)= Im(B)= 0] and by

maximizing Im(_) with respect to _,8 at fixed Re(9).

The N factor is then given by

sT
N = f Im(_) ds (4.2)

[ Re (_g) ]sc

where v = (_ ,_8) is the (complex) group velocity andg

s is the arc length along the curve whose tangent is the

real part of the group velocity. Noting that

dR /(Re(_o ))2 + (Re(_8))2= dR + ]ds = Re(_) _ Re(m ) Re(_g)

Eq. (4. 2) can be written as

•RT

Im (_) dR
N = f Re(we)

Rc

(4.3)

Here the subscripts C and T indicate critical (linearly

unstable) and onset of transition, respectively.
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5. EXPERIMENTALSTUDY

An experimental program was established to quantitatively

study the flat rotating disk flow with particular attention

given to measurement of the growth of boundary layer disturbances

as a function of Reynolds number. The experimental set-up

is described along with the measurement techniques.

Measured mean velocity profiles are compared with the exact

solution and an analysis of mechanical disk vibrations is

presented.

Rotating Disk Apparatus

The experimental apparatus is shown schematically

in Figure (i). A 457 mm diameter, 12.7 mm t_ick Plexi-

glass disk was attached to a 50.8 mm diameter aluminum

shaft by means of two parallel aluminum mounting disks.

Shim stock inserted at various circumfrential locations between

the mounting disks was used to control alignment of the

Plexiglass disk and to compensate for asymetrical flexure

of the Plexiglass introduced by mounting stresses. The

drive shaft was inserted between two pre-mounted, self-

aligning ball bearings and was driven by a 1/4 Hp, 1725

RPM AC motor through a 2:1 belt and pulley speed reduction
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system. The test surface of the Plexiglass was hand

gr°und on a surface table to a flat, near-_loss finish

Static measurements?_ith a dial indicator showed the

disk to have 9__/r O.008 _m devia_iQn fro_ a flat plane.

T_e _ssembly_was housed in a l.S m cubical box with an_

open front. The radial flow at the disk periphery was

ducted behind the disk by placing a 1.8 m square cover

several boundary layer thicknesses in front of the disk

with the test surface exposed by a large hole of slightly

smaller diameter than the disk.

Hot Wire System

A single constant temperature, linearized hot wire

was used for all measurements. Wollostan Pt-10Rh 0.0025 mm

wire with an active length of 1.0 mm was used. Calibration

was done in the entry region of a duct flow at room temperature

with the wire and prongs in the same orienta£ion with

respect to the flow as during the boundary layer measurements.

For measurements, the wire was placed parallel to the disk

surface with the wire axis along a radius. The wire was

fixed in space while the disk boundary layer rotated past

it.

Response of a Single Hot Wire in a Three-Dimensional Disk Flow

A single hot wire parallel to the disk surface with the

wire axis along a radius will indicate a mean velocity having

the magnitude of the vector composed of the axial and tangential
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components of the flow. In non-dimensional terms, the

ratio of this magnitude to that of the tangential component

is given by:

1 H 2 1 1 H 2
_i + (_ _) --1 + _- (_ (G+I)) (5.1)

ii H 2
Provided that the term _(_ _) is small, the hot wire

will provide an excellent estimate of the actual tangential

velocity distribution. For the current experiment, the

minimum value of R was 125. For this case, Eq. (.5.1)

shows that the discrepancy between the actual tangential

velocity and the quantity measured by the hot wire is less

than one percent for all G>-0.95 or over approximately

the inner 80% of the boundary layer thickness. Since the

outer region of the boundary layer is characterized by

extremely low velocities for which measurements are inherently

inaccurate, no corrections were made to the measured profiles.

To verify that a well behaved disk flow was present, the

mean tangential velocity distribution was measured at

several Reynolds numbers. Results are shown in Figure 2.

The profiles for R = 251, 374 are in good agreement

with the exact solution (see Eqs. (2.6) - (2.10)). The

distribution at higher Reynolds numbers Reynolds numbers

is expected to deviate from the exact solution due to the

presence of the highly amplified stationary vortices. Even
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then, the effect of the stationary vortices on the mean

flow is found to be largely confined to the outer region

of the boundary layer.

.....................................

....._easurementsuof the fluctuating c0mponents of the flow

were made in order to determine the gro%_th rate of the stat_ionary

disk disturbances. The theoretical formulation of the

problem assumes the same growth rate Im _ for the three

velocity components. Therefore, any arbitrary combination

of the components will also have the same growth rate.

The single hot wire responds to the axial and tangential

components of the flow. The growth exhibited by the

hot wire can, therefore, be used for comparisons with

theoretical predictions. The experimental growth rates

will be compared with the theoretical predictions in

the next Section.

Mechanical Disk Vibrations

Due to the large velocity gradient near the disk surface,

any displacement of the disk surface relative to the hot

wire will modulate the anemometer output. Low frequency

displacements due to the static or dynamic deviation of the

disk from a flat plane are easily recognizable since they

modulate the signal ,at a frequency corresponding to some small

multiple of rotational frequency. Figure 3 shows that

static deviation of the disk consists of four undulations

in the surface. Figure 4 is a plot of the hot wire

output at R = 457 and G = - 0.5 for one revolution of

the disk. The signal was bandpass filtered in the range
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250 < f < 600 hz, however, the envelope of the signal

roughly corresponds to the disk surface undulations and

thus partially accounts for the modulated output.

Other sources of vibrations were the ball bearings,

drive system,and structural resonances of the disk support

stand. These vibrations were of very small amplitude and

were noted to occur in the same frequency range as the

passing stationary vortices. These vibrations are critical

when measuring disturbances in regions of low fluctuation intensity.

To show the effect of these vibrations, the displacement of

the center of the disk was monitored with a proximeter

and the spectrum of these vibrations was compared to that of

the hot wire output at R = 125 and G = -0.5. The

vibration data was converted to apparent velocity fluctuations

by using the calculated _(z) velocity gradient at the hot

wire location. It was assumed that the vibrations at the

center of the disk were verv similar to those at the hot

wire location. Results are shown in Figure 5 (Both

sets of data were bandpass filtered in the range 250<f<600 Hz}.

The plots show that the hot wire output can be largely

attributed to the disk vibrations. Since the vibrations

were in the same frequency range as the stationary vortices,

the hot wire data at low intensities could not be used to

indicate the amplification rate of the stationary disk

disturbances. This also eliminated the possibility of

experimentally determining the critical Reynolds number for

the stationary disturbances.
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6. RESULTS AND DISCUSSION

Critical and Transition Reynolds Numbers

Some of the available experimental data for critical

and transition Reynolds numbers are given in Table i.

It is apparent that there is considerable variation of

the observed critical point. We believe that the

variation can be attributed to the different measurement

techniques used in the experiments. Using the Orr-

Sommerfeld equation, we obtained a critical Reynolds

number _ = 171 which is in good agreement with the

theoretical results of Brown [14] and Cebeci and

Stewartson [3] but is considerably less than the

observed values. The value of the critical Reynolds

number for stationary vortices is significantly improved

when the effects of Coriolis forces and streamline

curvature are included. Our calculated critical

Reynolds number of 287 is in excellent agreement with

the value of 297 obtained by Kobayashi et al [12]

using hot-wire techniques. Kobayashi et al [12] also

performed a theoretical analysis in which some of the

effects of Coriolis forces and streamline curvature were

considered. They calculated a critical Reynolds number

of 261.

In order to correlate transition using stability

theory, one has to know the experimental location of

the onset of transition. The transition Reynolds

numbers usually given for experiments (see Table i)

are the locations where transition is complete.
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Gregory and Walker [21] showed that, for a slitted rotat-

ing disk, the transition region is composed of two

subregions: (i) a vortex region and (ii) an inter-

mediate turbulent region where the intermittancy factor

y varies from 0 to I. Stability theory is only

applicable up to the point where the first turbulence

burst appears (y = 0). Gregory and Walker obtained

R = 505 and 524 for Y= 0 and _ = i, respectively.

Chin and Litt [23], using an electrochemical technique,

observed that the transition was complete at R = 592.

They also observed that the vortices start breaking

down into turbulence at R T 510. We believe that this

result should be taken as the relevant location for the

onset of transition for the purposes of comparison

with stability theory. Further evidence that the initiation

of transition occurs at R_ 510 is provided by Kobayashi

et al who observe that the disturbances are non-linear

at R = 500. Usually the non-linear region is narrow

so the onset of transition soon follows.

et al [13] observed turbulent flow at

the basis of all this evidence we take

location of the onset of transition.

Growth of Infinitesimal Disturbances

Further, Federov

R = 515. On

_=510 as the

Disturbances of all frequencies may be present in

natural transition. We follow the evolution of several

different modes and the one which gives the highest inte-
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grated growth factor is used to correlate transition.

Stationary disturbances were found to give the highest

N factor for rotating disk flow over all positive real

frequencies. Disturbances with negative phase velocities

can give slightly higher N factors but they are of

no consequence in the process of transition.

It was shown in [6] that envelope method is a

reliable tool for transition prediction in three

dimensional flows. First, we report calculations using

the Orr-Sommerfeld equation. The resulting N factors

are compared with those of Cebeci and Stewartson [3]

in Figure 6. It is evident that their method predicts

N =20 at transition (R = 510) while the present

(envelope) method gives N =22 at transition.

Cebeci and Stewartson [3] used spatial stability

theory and in order to remove arbitrariness among the

parameters of equation (4.1), they imposed the condition

1

_8 r
= 0 (6.1)
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where ei = Im(_), 8 = Re(8). In order to simplifyr
their computations, Cebeci and Stewartson assumed that the

maximum growth rate at any R > Rc is independent of

the growth direction. This condition is not

realistic and we believe that had their growth rates

been maximized over all possible growth directions their

N factor at transition would be in better agreement with

the present predictions using the Orr-Sommerfeld

equation.

In Fig. 7 we plot calculated temporal growth rates

(Im(_)) for stationary vortices. It can be seen that

the inclusion of streamline curvature and Coriolis

forces have a significant stabilizing effect. Calculations

with only Coriolis terms (as done by Lilly [15] for

Ekman flow) were also made. These results indicate

that streamline curvature effects must also be included

in order to model properly the physical problem.

Since the instability is spatial in nature, we

transform temporal growth rates to spatial growth rates

a using the group velocity transformation

Im(_)

= Re'_ '_ ! (6.2)
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The spatial growth rates are plotted in Figure 8

together with experimental data. Except for the data

at low fluctuation intensity and for data in the

turbulent breakdown region, the agreement with the present

stability analysis is good.

Integrated growth rate (N factor) results are

presented in Figure 9. The present stability theory

gives N = 10.6 which is close to the value N = 9

for two dimensional flows and is in the ranae of values

found for swept wings [6]. It is apparent that there

is a very significant effect on the predicted transition

N factor when the effects of Coriolis forces and stream-

line curvature are included. The resulting N factors

are much more reasonable than those obtained by conventional

stability theory where only the Orr-Sommerfeld equation

is solved.

Also presented in Figure 9 are experimental results

for the N factor. The experimental amplification rate

of the stationary vortices was determined from the rms spectra

of the bandpass filtered hot wire output. The rms

voltage in a narrow band centered on the frequency (438 + 8 Hz)

of the stationary vortices being swept past-the probe was Calculated

for each Reynolds number. The N factor was based on this

rms level relative to the local disk velocity. Due to the
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problem with disk vibrations indicated earlier, it was

assumed that A0 = 1 and the resultant data were shifted

at constant Reynolds number to match the theoretical growth

curve. The data are seen to be in a fair agreement with

the present theory over the range 400<R<500. The significant

deviation of the data for R <400 is attributed to disk

vibrations. The falling off of the data for R > 500 is due

to the highly non-linear nature of the flow in this region

and breakdown to turbulence.

Although shifting the level of the data because of uncer-

tainty in the value of A 0 can be questioned, the fact that the

slope of the experimental curve (o = dN/dR) matches the present

theory (see Figure 8) in the range 400<R<500 is very encouraging.

With recent advances in rotating equipment technology, it may be

feasible to build a disk drive system with low enough vibration

amplitudes in the frequency range of interest to allow an experi-

mental estimate of A 0 to be made. Work investigating this

possibility is now underway.

The absolute value of the fluctuation intensity is plotted

in Figure i0. The intensities for the range in which the growth

rate agrees with the theory is seen to be from 0.1% to 10%.
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Orientation and Number of Vortices

In the envelope method we maximize growth rates

Im(_) for stationary vortices over all possible wave

angles. We find that the vortex spirals make an

angle of 11.2 ° with the negative of the direction

of disk rotation. This is in excellent agreement with

the experimental value of 11-14 ° [10-13].

It can be shown that the number of vortices

is given by

n = 8R (6.3)

where 8 is defined in (2.19).

Gregory et al [i0] observed about 30 vortices

in the range of Reynolds numbers range 430-530. At

R _ 430, we obtain n = 0.0698 x 430 =30, which is in

excellent agreement with the experimental observation.

If the number of vortices is to remain constant then

8 should vary as I/R. Our calculations do not show

this behavior. Instead, B remains almost constant so

that n varies with R.

The continuous variation of n can not be justified

physically. Howeverl it is possible that the number of

vortices does vary but not in a continuous fashion.

There is some experimental evidence of bifurcation in which

n undergoes discrete jumps. Fedorov et al [13] observed
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30 vortices at R = 387. However at lower Reynolds numbers

(R = 180 - 245), they observe 14-16 vortices. Linear

theory is unable to predict such bifurcation phenomena

so nonlinear theory may be needed.

Parallel or Type II Instability

Lilly [15] presented numerical solutions of the

Ekman layer problem and included the effect of Coriolis

forces in his analysis. He found that at very low Reynolds

numbers an instability mechanism exists whose disturbances are

different from the stationary disturbances described

previously. Lilly called this "parallel instability" and

suggested that it is of viscous type since it vanishes

at high Reynolds numbers. He found that the critical

Reynolds number for these fast moving disturbances is 55

and the resulting modes are oriented at small negative angles.

The orientation angle at the critical point is -23 °

which decreases in magnitude as the Reynolds number

increases. A similar instability mechanism was detected

in the experiments of Faller and Kaylor [16] (who called

it a type II instability) and Tatro and Mollo-Christensen

[17].

In our calculations, we also find travelling

disturbances (f~ I00 Hz relative to the disk) at low

Reynolds numbers. The critical Reynolds number for these

disturbances is calculated to be 49. The critical

parameters are
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This corresponds to a wave oriented at an angle of-26.9 °

These disturbances have much lower growth rates than the

stationary ones.

CONCLUSIONS

The growth of instabilities in the three dimensional

flow due to a rotating disk is studied both theoretically

and experimentally. The experiments show clearly a

region of linear growth that is in good agreement with

linear stability theory that includes the effects of

Coriolis forces and streamline curvature° Therefore,

the eN method gives good results for transition

prediction in these three dimensional boundary layers

with N of the order ii.
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Table i. Critical and Transition Reynolds Numbers for Rotating Disk Flow

Investigators Critical
Reynolds Number

Transition Onset of
Transition
(estimated)

Method of
Investigation

Smith [9] (1947)

Gregory et al
[i0] (1955)

Cobb & Saunders
[23] (1956)

Gregory & Walker
[21] (1960)

Chin & Litt
[2_] (1972)

Fedorov et al
[13] (1976)

460

430

447

367

412

387

557

530

490

524

592

515

505

510

hot-wire probe

visual
(China clay

technique)

heat transfer from
the disk

acoustical
slitted disk

mass transfer
coefficient using
electrochemical
technique

visual (Napthalene),
acoustical

Clarkson et al
[Ii] (1980)

Kobayashi et al
[12] (1980)

Present results

532-621

297

287

562-680

566 500(non-
linear
oscillations

isual
dye in water)

hot wire probe

calculations using

stability theory
including Coriolis

force and streamlin

curvature effects
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Figure i.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure I0.

FIGURE CAPTIONS

Disk system lay out - top view

Normalized mean tangential velocity profiles for the
K_rmAn rotating disk flow

Measured deviation of disk surface from a flat plane

Time variation of fluctuation intensity

Comparison of disk vibration spectrum with hot wire
output. (a) Hot wire output (b) Proximeter

Integrated growth factor using Orr-Sommerfeld equation
(a) Present calculations

(b) Cebeci and Stewartson [3]

Temporal growth rates for stationary vortices

(a) Orr-Sommerfeld equation

(b) Orr-So_merfeld equation with Coriolis force effects
included

(c) Orr-Sommerfeld equation with Coriolis force and

streamline curvature effects included

Spatial growth rates for stationary vortices

(a) Orr-Sommerfeld euqation

(b) Present theory

(+) Experimental data

Integrated growth factor for stationary vortices

(a) Orr-Sommerfeld equation

(b) Present theory

(+) Experimental data

RMS intensity of velocity fluctuations as a function of
Reynolds number
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V. Subcritical Transition to Turbulence in Plane Channel

Flows

While experiments I show that incompressible plane

Poiseuille and plane Couette flow may undergo transition

to turbulence at Reynolds numbers R of order i000,

linear stability analysis of these plane parallel flows

gives critical Reynolds numbers of 5772 for

plane Poiseuille flow 2 and _ for plane Couette flow 3.

This discrepancy between theory and experiment suggests

that the mechanism of transition is not properly represented

by parallel-flow linear stability analysis. In this Letter,

we present a new linear three-dimensional mechanism that

predicts transition at Reynolds numbers in good agreement

with experiment for both plane Poiseuille and plane Couette

flows. Here we present the theory applied to plane

Poiseuille flow, defined as flow between fixed parallel

plates that is driven by a pressure gradient.

We begin by studying two-dimensional travelling-wave

solutions to the Navier-Stokes equations:

v(x,z,t) =  (x-ct,z) (i)

where c is a real wave speed, x is the downstream

coordinate and z is the coordinate perpendicular to the

channel walls at z = ±i. No-slip boundary conditions are

applied at the walls and 2_/_ periodicity in x is assumed.

2
For all R , one solution is the laminar flow (l-z), where
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R = i/9 and _ is the kinematic viscosity. For R > 2900,

up to 2 other solutions (.neglecting an arbitrary phase_

may exist for any given e .4 The locus of points in

(E,R,e) space for which these solutions exist is called

the neutral surface. Here E is the energy of the flow

relative to that of the laminar flow. A slice of the

neutral surface for given subcritical Reynolds number

(290C_ R < 5772) is shown in Fig. i.

If a one-dimensional phase space representation were

appropriate to describe the behavior_of flows off the neutral

surface, E would evolve according to

dE _ f (E) (2)
dt

Typically the critical points of (2) are alternately stable

and unstable, so the lower branch (LB) solutions on the

subcritical neutral surface plotted in Fig. 1 are unstable

while the upper branch (UB) solutions are stable.

While these stability predictions are correct, the

evolution of two-dimensional flows is not restricted to a

one-dimensional phase space. Projections of numerical

solutions 5 of the two-dimensional Navier-Stokes equations

on the two-dimensional phase space (/_i' /_2 ) are plotted

in Fig. 2. Here E k is the kinetic energy in that part

of the flow that depends on x like e ikex. Orbits of

solutions with initially large energies do not follow simple .........
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curves. The time-dependent evolution of two-dimensional

flows evidently requires a multi- (likelv infinite) dimensional

phase space. Thus, Landau-Stuart-Watson 6 nonlinear

stability theory, which gives evolution equations of

the form (2) can not be Valid away from the neutral surface. 7

Several other features of Fig. 2 are noteworthy. First,

the two orbits in the lower left hand corner illustrate the

existence of a threshold energy (near that of the LB

solution) below which disturbances decay. Second, solutions

with energies less than that of the UB solution (indicated

by the point marked 'steady solution' in Fig. 2) can overshoot

the UB energy by factors of 4 or more. Third, and most

importantly, typical solutions quickly evolve to a state

within a band of quasi-equilibria and, then, only very

slowly approach the steady UB solution. The time scale

for initial adjustment to a quasi-equilibrium state is

of order the eddy circulation time I//E, (i.e., of

order i0) while the time scale for approach to the equilibrium

...........State is of order the diffusion time i/_ (i.e., of ....

order 1000 - 10000). In the quasi-equilibria, the spanwise

vorticity must be nearly constant on streamlines 8, so that

equilibrium is achieved bv diffusion of vorticity. In fact,

vorticity can vary by at most 0(9) along interior stream-

lines of the equilibrium flows. Nearby flows must have the

same property implying the existence of quasi-equilibria

evolving only on a diffusive time scale.

The quasi-equilibria are the basis of our transition

mechanism in plane Poiseuille flow as direct numerical

9
solution of the Navier-Stokes equations shows that they
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are strongly unstable to infinitesimal three-dimensional

disturbances. In Fig. 3, we plot the evolution of (initially

small) three-dimensional disturbances superposed on finite-

amplitude two-dimensional motions. Evidently, the three-

dimensional disturbances quickly achieve a form that grows

exponentially in time for R >i000. The growth rate of the

three-dimensional disturbances is rapid with their amplitude

increasing by a factor of about 10 in a time of i0.

This short time scale for subcritical three'dimensional .....

growth should be contrasted with the long time scale of
2

order I000 for evolution of supercritical Orr-So_merfeld modes.

There is strong evidence that this instability is a

physically relevant one in that it is fairly insensitive to

initial conditions and has small threshold energies. It is

necessary to distinguish here between this instability and

the ensuing transition to turbulence. If the two-dimensional

flow persists sufficiently long for the three-dimensional

perturbations to attain a finite amplitude, direct numerical

simulation has shown 9 that the resulting three-dimensional

flow quickly develops a turbulent character with strongly

non-periodic behavior. Thus to 'predict' transition one

must know the initial two-dimensional and three-dimensional

energies as well as their respective time scales. For instance,

the most dangerous three dimensional instability for given

two-dimensional energy is not necessarily the most likely to

force transition if the two-dimensional state is outside the
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band (in wavenumber) of quasi-equilibria, It is Dossible to

use our methods to construct a neutral surface for transition

in any given (presumably large) parameter space. However, .........

we confine attention here to demonstrating that our mechanism

predicts transitional Reynolds numbers in accordance with

experiment.

The exponential growth illustrated in Fig. 3 suggests
i0

that a linear instability mechanism is involved. Assuming

a fl0w of the form

+ ÷ + o t+i By]v(x,t) = F(x-ct,z) + e Re[G(x-ct_z)e (3)

substituting into the Navier-Stokes equations, and linearizing

with respect to e, a linear eigenvalue problem for

results. The Galilean transformation to a reference frame

moving with the phase speed c eliminates time-dependent ......

coefficients, so the problem is separable in t. The resulting

eigenvalue problem has been solved numerically using Chebyshev

polynomial expansions in z and highly truncated Fourier

series expansions in x for F and G_ In Fig. 4, we plot

ii_

the maximum growth rate , Re(o) r vs the spanwise wavenumber

for R = 4000, _ = 1.25. The results of direct numerical

simulations {cf. Fig. 3) are also plotted in Fig. 4. Evidently,

the large growth rates observed in the direct numericalsimulations

.......can beexplained by this linear eigenvalue problem. ....... i

Note that the linear theory presented above can be

extended to ReynOlds numbers below 2900 by freezing the

91



quasi-equilibria which evolve very slowly compared to the

rapid exponential growth of the three-dimensional perturbations.

For R >i000, the quasi-equilibria decay sufficiently slowly

that three-dimensional perturbations can grow, overwhelm the

two-dimensional flow, and break down to turbulence.

The rapi_ growth rates described above are due to the

combined action of vortex stretching by the nearly inviscid

two-dimensional steady motion F and tilting of the vortex

lines of F by the perturbation G. By itself, vortex

stretching by F can not give exponential growth rates
12

because of the two-dimensional anti-dynamo theorem.

Detailed flow visualizations of the instabilities described

here will be given elsewhere. It will be shown that

three-dimensional perturbations grow on a time scale of

order I//E2_D, which must be shorter than the decay

time of the two dimensional motion for the instability

to be effective. The sharp cutoff in growth rate Re(o) for

small B observed in Fig. 4 reflects a threshold of streamwise

vorticity for stretching to persist.

Direct numerical simulations 9 of transition in plane

Couette flow show that while there is no evidence that

equilibria of the form (i) exist, the three-dimensional

instability process outlined above is still effective down to

Reynolds numbers of order i000. While there are no quasi-

equilibria in plane Couette flow that evolve on purely

diffusive time scales, the decay rates of finite-amplitude

two-dimensional disturbances are still several eddy circulation times.
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This implies that the threshold three-dimensional

energies in plane Couette flow are somewhat larger than in

plane Poiseuille flow. However, the resulting instability

is at least as strong and turbulence quickly ensues.
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Figure Captions

Fig. i.

A subcritical (E,_)

plane Poiseuille flow at

slice of the neutral surface for

R = 4000. The stability of

solutions is indicated by the arrows. The behavior shown

in this plot is typical for 2900 < R < 5772.

Fig. 2.

A phase portrait of disturbances to laminar plane

Poiseuille flow in (E/_I, E/_2) space at R = 4000,_ = 1.25.

The dots, equally spaced by 1.25 in time, indicate the

evolution of perturbations from initial conditions proportional

to the least stable Orr-Sommerfeld eigenfunction at this

(_,R). Note the existence of a band of quasi-equilibria.

Fig. 3.

A plot of the growth of three-dimensional perturbations

on finite-amplitude two-dimensional states in plane

Poiseuille flow at (_,B) = (1.32, 1.32). Here E2_ D is

the total energy (relative to the laminar flow) in wave-

numbers of the form (n_,0), while E3_ D is the total

energy in wavenumbers (n_,B). For R > i000 we obtain

growth and for R = 500 decay. The growth rate of the

three-dimensional disturbance amplitude at R = 4000

is about 0.18 (~/EE2_ D) and depends only weakly on R

for larger R. The initial conditions are superpositions

of the laminar flow, a [large (E2_D=0.04)] two-dimensional

Orr-Sommerfeld mode with wavevector (_,0) and a [very
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small C_3_D = 10-16)] _hr_o_dimensional tran_v_zm_
Orr-Sommerfeld mode with wavevectors (0,B).

Fig. 4.

A plot of the growth rate _ of three-dimensional

perturbations as a function of 8 at R = 4000, _ = 1.25.

Note the good agreement between the linear calculation and

the 2-mode direct simulations. Increasing the number of

retained modes in x increases the growth rates. However,

the error in the 2-mode model is not large.
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VI. Finite Amplitude Stability of Axisvmmetric Pipe Flow

ABSTRACT

The stability of pipe flow to axisymmetric disturbances

is studied by direct numerical simulation of the incompressible

Navier-Stokes equations. There is "%o evidence of finite-

amplitude equilibria at any of the wavenumber/Reynolds

number combinations investigated, with all perturbations decaying

on a time scale much shorter than the diffusive (viscous)

time scale. In particular, decay is obtained where

amplitude-expansion perturbation techniques predict

equilibria, indicating that these methods are not valid

away from the neutral curve of linear stability theory.

J
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i. INTRODUCTION

It is generally agreed that pipe Poiseuille flow

(also called Hagen-Poiseuille flow) is linearly stable to

all disturbances (both axisymmetric and non-axisymmetric)

at all Reynolds numbers (Sexl 1927, Lessen et al 1968,

Davey & Drazin 2.969, Metcalfe& Orszag 1973, Salwen et

al 1980) . Therefore, the explanation of the observed

transition to turbulence in this flow requires finite-

amplitude instabilities.

Finite-amplitude stability analyses of pipe flow

have so far been restricted to axisymmetric disturbances

(Davey & Nguyen 1971) and even these results are not

without controversy (Itoh 1977, Davey 1977). In this

paper, we use spectral methods to investigate numerically

the behavior of finite-amplitude axisymmetric disturbances in

pressure-driven pipe flow. The basic question concerns the

existence of finite-amplitude equilibrium states of this

flow. If such states do not exist then pipe flow is stable

to all axisymmetric distrubances. Available finite-

.............. amplitude analyses predict equ_libria_ however they are

in disagreement over both results and methodology.
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2. NUMERICALMETHODS

The axlsymmetric incompressible Navier-Stokes

equations are, in rotation form,

8u _ _II + 4 + v_ 1 32
+ _ (D2 + --

_x 2) u
(i)

8v _- u_ + 1 D 2 1 82

8--t = - 8r - _ ( r2 + _)
v (2)

_(ru) + _ (rv) = 0 (3)

where u and v are the velocities in the x

directions, respectively, D 2 = _ 8/_r(r_/_r),
r

= _v/Sx -Su/Sr is the azimuthal vorticity.

The boundary conditions on the velocities are

and

and

r

u, v/r bounded (r = 0), u,v = 0 (r = i) (4)

........ R .... is theReyn01ds number based on pipe radius

and center-line velocity. The constant pressure gradient

term is assumed to be that of the laminar flow, namely

4/R, and H is the disturbance pressure head.

We discuss briefly below four features of our numerical

methods: spectral representation; time-stepping;

operator inversion; and initial conditions. The major
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difference between the present pipe flow calculations

and our plane channel flow simulations (Orszag & Kells

1980; Patera & Orszag 1980) is that variable-coefficient

equations must now be solved implicitly, whereas

in planar geometry only constant coefficient equations

require, implicit solution.

The velocities are expanded as

u(x,r,t) = u(n,p t)eienxT (r)
• 2p

P

n I <_N p=0
(5)

V (x,r,t) =

P

[ v (n,p, t) eienxT (r)

n [<N p=0 2p+l

(6)

where the Chebyshev polynomials T (r) Dre defined bv -
q

_J

T (cos 8 ) = cosq0
q

The even (odd) nature of u(v) follows naturally from the

axisymmetry of the problem. Boundedness at the origin

is -_hen automatically imposed. Periodic boundary ........

conditions are applied in x with periodicity interval

2_/_.
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A fractional time stepping method (Orszag & Kells

1980) is used, each full step consisting of (i)

a non-linear step, (ii) a pressure step, and (iii)

a viscous dissipation step. For the first fractional

step a second order Adams-Bashforth method is used:

^n+i n 3 n n i n-i n-I
u = u + At (_ v _ - _v _ + 4/R)

^n+l n 3 n + )v = v + At (-_u _ n _uln-l_ n-i

where the superscript refers to time step. The non-

linear terms are calculated efficiently using transform

methods and collocation (pseudospectral) techniques

(Gottlieb & Orszag 1977). Products are evaluated in

physical space while derivatives are calculated in

spectral space_ Transformations between the two

representations are done using extensions of the

fast Fourier transform algorithm. In the remainder of

........ this Sectien it i_ assumed-tha_ the velocities are in

mixed representation, Fourier in x but physical in

r. The axial wavenumber of a Fourier mode will be

denoted by y.
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Next, incompressibility is imposed with the

pressure step

n+l _n+l_ = - iyAt_* (r < i) (7)

^ n+l ^n+l 3H
v = v - At _r (r < i) (8)

• _n+l _ r_n+l)17.ru + ( = 0 (r_< i) (9)

n+l
v = 0 (r = i), (i0)

where We write H_ rather than H to indicate that the

pressure obtained here is an intermediate result. Eqns.

can be combined to give a single equation for

(7)- (10)

_ * ^n+l 1 _ (rQn+l) (r < i) (ii)(D 2 72) z = i¥ u + --
r _r

_n
r = 0 (r = i). - (12)

Note that _ is expanded in an even series of Chebyshev

polynomials like (5). The solution of (ii) -(12) is

discussed below.
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In the final fractional step, viscous effects are

included using the Euler backward scheme

n+l _n+l _ 2) n+lu = u + (D 2 -¥ u (r< i) (13)

n+l
u = 0 (r = i) (14)

v n+l = v_n+l + m%_t (D 2 12 y2)vn+l (r <l) (15)
r

n+l
v =0 /r = i). (16)

The overall scheme is only first order accurate in time

because the viscous and pressure operators do not commute.

Higher order accuracy in time may be obtained by extra-

polation methods.

The implicit parts of the procedure given above all

involve solution of an equation of the form

2
(L - 8 )4 = f (r< i) (17)

_ - 0 r = 1 (18)
a_ + b _r

108



for each Fourier mode, where

2
(Laplacian) operator in r, B

x-Fourier index (not r), and

independent of Fourier mode.

L is a second order

depends only on the

a and b are constants

We discuss briefly here

the discretization of L and the method of inversion.

For planar geometries L can be written as a tri-

diagonal system using a Chebyshev tau-method (Orszag

and Kells 1980). This system can then be inverted in

0(P) operations for each x-Fourier mode. The

curvature te_ns introduced by the cylindrical geometry

destroy the tridiagonal property of the tau-method

matrix, and collocation then becomes more attractive due

to the ease with which variable coefficient problems

can be handled.

To solve the full matrix equations resulting from

the collocation approximation of (17) - (18), an

eigenfunction solver is used that reduces the operation

.................... count from 0(P 3) to 0(P z) while only requiring the .........

storage of one p x p matrix for given (L,a,b). More

precisely, we diagonalize the collocation approximation to

L as

-i
L= _ A_

The solution to (17) - (18) can then be written as
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= _-i (A- 82I) y f

The diagonalization (independent of Fourier mode) is

done in a pre-processing stage.

Finally, the initial conditions for the run_

presented here are of the form

÷ l_r2) ÷ ÷v(x,r,t = 0) = ( x + A VL(X,r)

where v L "s an eigenfunction of the fourth-order

linear stability equation obtained from (i) - (3) by

assuming a solution of the form

÷ l_r 2 ÷ i (x-_t)v = ( )x + e_(r) e

and linearizing with respect to e. The magnitude of the

perturbation is characterized by its energy relative to

that of the unperturbed flow..

m

1

12

0

(u 2 + v2)rhdr
_19) ;*

The details of the linear problem are well-documented

(Lessen et al 1968, Davey & Drazin 1969, Salwen et al

1980) and will not be discussed here. The numerical

procedure used to determine the eigenvalue _ and

eigenfunction _(r) for given R, e is similar to that

described by Orszag (1971) for planar geometries, except
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that collocation rather than the tau-method is used.

3. RESULTS

Before investigating finite-amplitude behavior it

is necessary to confirm that the direct simulation

gives decay rates and phase velocities in agreement

with those predicted by linear theory. The results

of two such tests are summarized in Table i, where

it is seen that the code adequately resolves both center .......

and wall modes at modest time steps (even without

using extrapolation methods to reduce the first order

error in time).

The results of linear theory can also be used to

test whether interactions between a primary mode and

its harmonic are accurately simulated. For pipe

flow, a center mode with wavenumber e nearly resonates

with its harmonic in the sense that the phase speed of

the mode with wavenumber 2_ is very close to that

of the primary. If one assumes they resonate exactly

(i.e. _2r = 2_ir)' the harmonic will obey a forced

amplitude equation of the form

_A2 e2_li t
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and thus A2 grows secularly in

attains a maximum at

t for short times and

, Zn (-2_ii) - Zn (-_2i)
t = (20)

r -2eli + _2i

As the modes are not exactly phase-locked, we would expect

the actual maximum to occur at t < t . This behavior
r

is verified in Fig. 1 by a plot of t /t r at _ = 1

for various Reynolds numbers. The maximum deviation

between (20) and our direct simu]ations is -3%.

Next, we study finite-amplitude disturbances

predicted to be dangerous by the method of false problems.

Davey & Nguyen (1971) find that the two disturbances

tested above at very small amplitude (see Table i) have

threshold (unstable equilibrium) energies (19) of

E = 0.003. The method of Itoh (1977) as applied by

Davey (1978) indicates that the center mode should

decay at finite amplitude, however it too predicts a

small-amplitude equilibrium state for the wall mode.

To test these theoretical results, the same series

of runs reported in Table 1 were repeated except that the

axial and radial resolution was increased, the time

integration was taken to a final time of T = 20 rather

than T = 10, and the initial energies of the disturbance

were taken to be 0.01. The results for the wall mode
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and center mode are shown in Figs. 2 and 3 respectively,

as plots of the logarithm of the primary and secondary

energies as a function of time. There is apparently

no evidence of equilibria. Runs at lower and higher

initial energies (e.g. E = 0.04) decay in a similar

manner.

The lack of equilibria reported above does not

preclude their existence for other Reynolds number/

wavenumber combinations_ However, in a variety of runs,

we have found no finite-amplitude steady-states. The

results of a typical run at R= 4000 , _ = 1.0, _ = 0.3783 -

i 0.1025, are plotted in Fig. 4. From Fig. 4 we

infer that the disturbance at R = 4000 decays in a

time very short compared to a diffusive time scale, and

is therefore consistent with the absence of equilibria

(Orszag & Patera 1980).

The time scale for decay of finite-amplitude axi-

symmetric-States is central to an understanding of three _ ....

dimensional transition. The three-dimensional instability

mechanism leading to transition in plane Poiseuille and

Couette flows (Orszag & Patera 1980) develops on a time

scale of order I//E, where E is the energy of the two-

dimensional disturbance. For the disturbance plotted in Fig. 4,

........i;//E-is _ Signfficantly shorter than hhe _fmescale-on-whiCh ........

the perturbation decays.
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Thus, it seems that the instability we found in planar

channel flows may be relevant to transition in pipe

flow as well. This possibility will be investigated

further in a later paper in which the behavior of

non-axisymmetric disturbances to decaying axisymmetric

states will be considered.

Our results indicate that the method of false

problems iE not a valid procedure for investigating

finite-amplitude axisymmetric perturbations to pipe

flow. We do not attempt a critique of these methods

here except to emphasize a point made by Herbert (1977).

Herbert cormrLented that the retention of only the first

term in the amplitude expansion of the frequency without

knowing the convergence properties of the series can lead

to incorrect conclusions, especially in cases (such as .......

pipe flow and plane Couette flow) where there is no linear

neutral curve. The radius of convergence of the

.............ampli£ude-expansion may simply be too small to predict ................

equilibria. For example, numerical simulations of plane

Couette flow (Orszag & Kells 1980, Patera & Orszag 1980)

do not confirm the existence of two-dimensional equilibria

predicted by Davey & Nguyen (1971) on the basis of amplitude

expansions. The direct iteration procedure of Herbert

(1977) bypasses this problem and can predict the existence

of equilibria as well as their threshold energy.
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However, a limited survey of the available phase space

has not yet yielded any finite-amplitude solutions.

We suspect there are none.
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Table i. Behavior of Linear Modes

Wall Mode Center Mode

R 1600. 500.

5.S 6.2

Re _ 1.5849 5.8852

Im _ -0.5396 -0,3917

Ixl0 -I0 ixl0 -I0
Perturbation Energy
Spatial Resolution
(2N× (P+l))

8x33 8x17

At 0.005 0.01

Final Time, T 10. 10.

Computed Re- _ i. 5836 5. 9146

Computed !m _ -0.5410 -_. 3876
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FIGURE CAPTIONS

Fig. 1 The ratio of the time at which the harmonic

attains its maximum to the time predicted by linear theory

(assuming perfect phase-locking) is plotted as a function

of Reynolds number when _ = I. The actual (computed)

time is less than the predicted linear theory time

because the real frequency of the ha_onic is not

exactly twice that of the primary.

Fig. 2 Decay of a wall mode at R = 1600, e = 5.8 from

an initial energy ( E = 0.01) larger than the equilibrium

value predicted by the method of false problems. Higher

energy disturbances also decay. Here E is the energy

of the disturbance relative to the mean flow [defined

in (19)]. Here N = 8 and P = 64 in (4)- (5).

The accuracy of this and other runs was tested by changing

N, P and the time step At.

Fig. 3 Decay of a center mode at R = 500, _ = 6.2 from

an initial energy (E = 0.0i) larger than the equilibrium

value predicted by perturbation theory. Here N = 8 and

P = 32 in (4)- (5).
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Fig. 4 Decay of a wall mode at R = 4000, e = I. The

decay occurs on a time scale much shorter than the

diffusive scale indicating the absence of equilibria.

Here N = 8 and P = 32 in (4) - (5).
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Fig. 1 The ratio of the time at which the harmonic

attains its maximum to the time predicted by linear theory

(assuming perfect phase-locking) is plotted as a function

of Reynolds number when _ = i. The actual (computed)

time is less than the predicted linear theory time

because the real frequency of the harmonic is not

exactly twice that of the primary.
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